This driver uses an X11 xterm(1) terminal emulator that obeys colors as a pixmap display.

#ident "@(#)VOGLE:driver/xt.c - VOGLE driver for color xterm character pixmap" #ident "@(#)VOGLE:author - John S. Urban" #ident "@(#)VOGLE:version - 1.0" /* *-----------------------------------------------------------------* | Author: John S. Urban | *-----------------------------------*-----------------------------* | Westinghouse Electric Corporation | osjsu@westinghouse.com | NO | Cray Research | urban@cray.com | NO | Silicon Graphics, Incorporated | urban@sgi.com | NO | Digital Equipment Corporation | John.Urban@digital.com | NO | Compaq | John.Urban@compaq.com | NO | Hewlett-Packard | John.Urban@hp.com | NO | Betchtel | urbanjs@bettis.gov | *-----------------------------------*-----------------------------* ================================================================================ USAGE NOTES ON THE XT DRIVER: Line thickness is supported with filled rectangular polygons when the line thickness is greater than 1. Square ends are used that go only to the endpoints unless line thickness is greater than 5, in which case complete circles are added to the endpoints. If very short polylines are drawn with the circles on the ends slight errors can occur. ================================================================================ NOTES FOR LATER: If could define a pixel-addressable region in xterm area and increase drawing speed in this region this could be very useful. Variations could allow cursor/locator control via mouse, via arrow keys; could change font size automatically; allow control of size of scrolling area; allow control of color table; Any way to avoid slow repaint ? Use alternate screen buffer? Color rectangles? unbuffered I/O? Store in tree and resize? Use xterm(1) alternate screen as backbuffer? mouse coordinates are limited in range because return as an ASCII character? what about 2-point font, in particular? ================================================================================ References: 1) Fundamentals of Interactive Computer Graphics, Foley & Van Dam, Addison Wesley Publishing Company, 1982 1996, 1997, 2004, 2005, 2006 John S. Urban This software is public domain and may be used for any purpose commercial or otherwise. It is offered without any guarantee as to its suitability for any purpose or as to the sanity of its writers. We do ask that the source is passed on to anyone that requests a copy, and that people who get copies don't go round claiming they wrote it. ================================================================================ */ /*--------------------------*/ #include <sys/ioctl.h> #if BSD #include <sgtty.h> #elif Linux #include <termio.h> #elif CYGWIN #include <termio.h> #elif Darwin #include <termios.h> #else #include <sys/termio.h> #endif /*--------------------------*/ #include <stdlib.h> #include <unistd.h> #include <stdio.h> #include <string.h> #include <time.h> #include <math.h> #include "vogle.h" #include <signal.h> extern FILE *_voutfile(); extern FILE *fp; #define MAX(x,y) ((x) > (y) ? (x) : (y)) #define MIN(x,y) ((x) < (y) ? (x) : (y)) #define ABS(x) ((x) < 0 ? -(x) : (x)) #ifndef PI #define PI 3.14159265358979323844 #endif static int X_SIZE, Y_SIZE, LAST; /* size of graphics array */ #define SCROLL 5 /* number of lines for scrolling region */ #define UNDRAWN 0 #define DRAWN 1 static int GLOBAL_font = 0; static int GLOBAL_color = 0; static int GLOBAL_drawn = UNDRAWN; /* flag whether page is blank or not */ static int GLOBAL_rasters = 1; /* line thickness */ static int GLOBAL_lastx, GLOBAL_lasty; /* position of last draw */ /* NB: to fit in a byte CMAPSIZE HAS to be 256 MAX */ #define CMAPSIZE 256 #define CMAPDEPTH 8 typedef struct { int r, g, b; } ColorTable; static ColorTable coltab[CMAPSIZE]; #define byte unsigned char byte *graphics_rgb; /* the graphics data */ /* The macro SET_PIXEL will set a given pixel in the graphics arrays WITH MINIMAL BOUNDS CHECK */ #define SET_PIXEL(x,y) ( *(graphics_rgb + MAX(MIN((x) * Y_SIZE + (y),LAST),0) ) = (char)(GLOBAL_color) ) static int GLOBAL_lastx, GLOBAL_lasty; /******************************************************************************/ /* The X11-Window system public domain 8x13 fixed font. */ #define NUMCHARS 95 #define FROW 13 #define FCOL 8 static unsigned char font8x13[NUMCHARS][FROW] = { {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, {0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x00, 0x10, 0x00, 0x00}, {0x24, 0x24, 0x24, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, {0x00, 0x24, 0x24, 0x7e, 0x24, 0x7e, 0x24, 0x24, 0x00, 0x00, 0x00}, {0x00, 0x10, 0x3c, 0x50, 0x38, 0x14, 0x78, 0x10, 0x00, 0x00, 0x00}, {0x22, 0x52, 0x24, 0x08, 0x08, 0x10, 0x24, 0x2a, 0x44, 0x00, 0x00}, {0x00, 0x00, 0x30, 0x48, 0x48, 0x30, 0x4a, 0x44, 0x3a, 0x00, 0x00}, {0x38, 0x30, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, {0x04, 0x08, 0x08, 0x10, 0x10, 0x10, 0x08, 0x08, 0x04, 0x00, 0x00}, {0x20, 0x10, 0x10, 0x08, 0x08, 0x08, 0x10, 0x10, 0x20, 0x00, 0x00}, {0x00, 0x00, 0x24, 0x18, 0x7e, 0x18, 0x24, 0x00, 0x00, 0x00, 0x00}, {0x00, 0x00, 0x10, 0x10, 0x7c, 0x10, 0x10, 0x00, 0x00, 0x00, 0x00}, {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x38, 0x30, 0x40, 0x00}, {0x00, 0x00, 0x00, 0x00, 0x7e, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x38, 0x10, 0x00}, {0x02, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x80, 0x00, 0x00}, {0x18, 0x24, 0x42, 0x42, 0x42, 0x42, 0x42, 0x24, 0x18, 0x00, 0x00}, {0x10, 0x30, 0x50, 0x10, 0x10, 0x10, 0x10, 0x10, 0x7c, 0x00, 0x00}, {0x3c, 0x42, 0x42, 0x02, 0x04, 0x18, 0x20, 0x40, 0x7e, 0x00, 0x00}, {0x7e, 0x02, 0x04, 0x08, 0x1c, 0x02, 0x02, 0x42, 0x3c, 0x00, 0x00}, {0x04, 0x0c, 0x14, 0x24, 0x44, 0x44, 0x7e, 0x04, 0x04, 0x00, 0x00}, {0x7e, 0x40, 0x40, 0x5c, 0x62, 0x02, 0x02, 0x42, 0x3c, 0x00, 0x00}, {0x1c, 0x20, 0x40, 0x40, 0x5c, 0x62, 0x42, 0x42, 0x3c, 0x00, 0x00}, {0x7e, 0x02, 0x04, 0x08, 0x08, 0x10, 0x10, 0x20, 0x20, 0x00, 0x00}, {0x3c, 0x42, 0x42, 0x42, 0x3c, 0x42, 0x42, 0x42, 0x3c, 0x00, 0x00}, {0x3c, 0x42, 0x42, 0x46, 0x3a, 0x02, 0x02, 0x04, 0x38, 0x00, 0x00}, {0x00, 0x00, 0x10, 0x38, 0x10, 0x00, 0x00, 0x10, 0x38, 0x10, 0x00}, {0x00, 0x00, 0x10, 0x38, 0x10, 0x00, 0x00, 0x38, 0x30, 0x40, 0x00}, {0x02, 0x04, 0x08, 0x10, 0x20, 0x10, 0x08, 0x04, 0x02, 0x00, 0x00}, {0x00, 0x00, 0x00, 0x7e, 0x00, 0x00, 0x7e, 0x00, 0x00, 0x00, 0x00}, {0x40, 0x20, 0x10, 0x08, 0x04, 0x08, 0x10, 0x20, 0x40, 0x00, 0x00}, {0x3c, 0x42, 0x42, 0x02, 0x04, 0x08, 0x08, 0x00, 0x08, 0x00, 0x00}, {0x3c, 0x42, 0x42, 0x4e, 0x52, 0x56, 0x4a, 0x40, 0x3c, 0x00, 0x00}, {0x18, 0x24, 0x42, 0x42, 0x42, 0x7e, 0x42, 0x42, 0x42, 0x00, 0x00}, {0xfc, 0x42, 0x42, 0x42, 0x7c, 0x42, 0x42, 0x42, 0xfc, 0x00, 0x00}, {0x3c, 0x42, 0x40, 0x40, 0x40, 0x40, 0x40, 0x42, 0x3c, 0x00, 0x00}, {0xfc, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0xfc, 0x00, 0x00}, {0x7e, 0x40, 0x40, 0x40, 0x78, 0x40, 0x40, 0x40, 0x7e, 0x00, 0x00}, {0x7e, 0x40, 0x40, 0x40, 0x78, 0x40, 0x40, 0x40, 0x40, 0x00, 0x00}, {0x3c, 0x42, 0x40, 0x40, 0x40, 0x4e, 0x42, 0x46, 0x3a, 0x00, 0x00}, {0x42, 0x42, 0x42, 0x42, 0x7e, 0x42, 0x42, 0x42, 0x42, 0x00, 0x00}, {0x7c, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x7c, 0x00, 0x00}, {0x1e, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x44, 0x38, 0x00, 0x00}, {0x42, 0x44, 0x48, 0x50, 0x60, 0x50, 0x48, 0x44, 0x42, 0x00, 0x00}, {0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x7e, 0x00, 0x00}, {0x82, 0x82, 0xc6, 0xaa, 0x92, 0x92, 0x82, 0x82, 0x82, 0x00, 0x00}, {0x42, 0x42, 0x62, 0x52, 0x4a, 0x46, 0x42, 0x42, 0x42, 0x00, 0x00}, {0x3c, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x3c, 0x00, 0x00}, {0x7c, 0x42, 0x42, 0x42, 0x7c, 0x40, 0x40, 0x40, 0x40, 0x00, 0x00}, {0x3c, 0x42, 0x42, 0x42, 0x42, 0x42, 0x52, 0x4a, 0x3c, 0x02, 0x00}, {0x7c, 0x42, 0x42, 0x42, 0x7c, 0x50, 0x48, 0x44, 0x42, 0x00, 0x00}, {0x3c, 0x42, 0x40, 0x40, 0x3c, 0x02, 0x02, 0x42, 0x3c, 0x00, 0x00}, {0xfe, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x00, 0x00}, {0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x3c, 0x00, 0x00}, {0x82, 0x82, 0x44, 0x44, 0x44, 0x28, 0x28, 0x28, 0x10, 0x00, 0x00}, {0x82, 0x82, 0x82, 0x82, 0x92, 0x92, 0x92, 0xaa, 0x44, 0x00, 0x00}, {0x82, 0x82, 0x44, 0x28, 0x10, 0x28, 0x44, 0x82, 0x82, 0x00, 0x00}, {0x82, 0x82, 0x44, 0x28, 0x10, 0x10, 0x10, 0x10, 0x10, 0x00, 0x00}, {0x7e, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x40, 0x7e, 0x00, 0x00}, {0x3c, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x00, 0x00}, {0x80, 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x02, 0x00, 0x00}, {0x78, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x78, 0x00, 0x00}, {0x10, 0x28, 0x44, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0x00}, {0x38, 0x18, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, {0x00, 0x00, 0x00, 0x3c, 0x02, 0x3e, 0x42, 0x46, 0x3a, 0x00, 0x00}, {0x40, 0x40, 0x40, 0x5c, 0x62, 0x42, 0x42, 0x62, 0x5c, 0x00, 0x00}, {0x00, 0x00, 0x00, 0x3c, 0x42, 0x40, 0x40, 0x42, 0x3c, 0x00, 0x00}, {0x02, 0x02, 0x02, 0x3a, 0x46, 0x42, 0x42, 0x46, 0x3a, 0x00, 0x00}, {0x00, 0x00, 0x00, 0x3c, 0x42, 0x7e, 0x40, 0x40, 0x3c, 0x00, 0x00}, {0x1c, 0x22, 0x20, 0x20, 0x7c, 0x20, 0x20, 0x20, 0x20, 0x00, 0x00}, {0x00, 0x00, 0x00, 0x3a, 0x44, 0x44, 0x38, 0x40, 0x3c, 0x42, 0x3c}, {0x40, 0x40, 0x40, 0x5c, 0x62, 0x42, 0x42, 0x42, 0x42, 0x00, 0x00}, {0x00, 0x10, 0x00, 0x30, 0x10, 0x10, 0x10, 0x10, 0x7c, 0x00, 0x00}, {0x00, 0x04, 0x00, 0x0c, 0x04, 0x04, 0x04, 0x04, 0x44, 0x44, 0x38}, {0x40, 0x40, 0x40, 0x44, 0x48, 0x70, 0x48, 0x44, 0x42, 0x00, 0x00}, {0x30, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x7c, 0x00, 0x00}, {0x00, 0x00, 0x00, 0xec, 0x92, 0x92, 0x92, 0x92, 0x82, 0x00, 0x00}, {0x00, 0x00, 0x00, 0x5c, 0x62, 0x42, 0x42, 0x42, 0x42, 0x00, 0x00}, {0x00, 0x00, 0x00, 0x3c, 0x42, 0x42, 0x42, 0x42, 0x3c, 0x00, 0x00}, {0x00, 0x00, 0x00, 0x5c, 0x62, 0x42, 0x62, 0x5c, 0x40, 0x40, 0x40}, {0x00, 0x00, 0x00, 0x3a, 0x46, 0x42, 0x46, 0x3a, 0x02, 0x02, 0x02}, {0x00, 0x00, 0x00, 0x5c, 0x22, 0x20, 0x20, 0x20, 0x20, 0x00, 0x00}, {0x00, 0x00, 0x00, 0x3c, 0x42, 0x30, 0x0c, 0x42, 0x3c, 0x00, 0x00}, {0x00, 0x20, 0x20, 0x7c, 0x20, 0x20, 0x20, 0x22, 0x1c, 0x00, 0x00}, {0x00, 0x00, 0x00, 0x44, 0x44, 0x44, 0x44, 0x44, 0x3a, 0x00, 0x00}, {0x00, 0x00, 0x00, 0x44, 0x44, 0x44, 0x28, 0x28, 0x10, 0x00, 0x00}, {0x00, 0x00, 0x00, 0x82, 0x82, 0x92, 0x92, 0xaa, 0x44, 0x00, 0x00}, {0x00, 0x00, 0x00, 0x42, 0x24, 0x18, 0x18, 0x24, 0x42, 0x00, 0x00}, {0x00, 0x00, 0x00, 0x42, 0x42, 0x42, 0x46, 0x3a, 0x02, 0x42, 0x3c}, {0x00, 0x00, 0x00, 0x7e, 0x04, 0x08, 0x10, 0x20, 0x7e, 0x00, 0x00}, {0x0e, 0x10, 0x10, 0x08, 0x30, 0x08, 0x10, 0x10, 0x0e, 0x00, 0x00}, {0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x00, 0x00}, {0x70, 0x08, 0x08, 0x10, 0x0c, 0x10, 0x08, 0x08, 0x70, 0x00, 0x00}, {0x24, 0x54, 0x48, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00} }; /******************************************************************************/ static void XT_POSITION_CURSOR(int x,int y) { /* Position cursor at specified location */ fprintf(fp,"\033[%d;%dH",(Y_SIZE-y)+SCROLL+1,x); GLOBAL_lastx=vdevice.cpVx=x; GLOBAL_lasty=vdevice.cpVy=y; } /******************************************************************************/ static void XT_RETURN_TO_SCROLL(){ (void) fprintf(fp,"\033[%d;%dH",SCROLL,1); /* go to last line of scroll region */ (void) fprintf(fp,"\033]10;rgb:f/f/f\007"); /* set background color */ (void) fprintf(fp,"\033]11;rgb:0/0/0\007"); /* set text color */ if (fp == stdout || fp == stderr){ fflush(fp); } } /******************************************************************************/ static void XT_COLOR_BYTE(int x,int y,char c) { int indx; if(c == (char)NULL ){ /* drawing lines */ (void) fprintf(fp,"\033[48;5;%dm ",GLOBAL_color); } else { /* printing hardware text */ indx = Y_SIZE * x + y; (void) fprintf(fp,"\033[48;5;%dm",graphics_rgb[indx]); /* Set background color */ (void) fprintf(fp,"\033[38;5;%dm%c",GLOBAL_color,c); /* Set foreground color */ } } /*******************************************************************************/ static void XT_DRAW_PIXEL(int x, int y){ XT_POSITION_CURSOR(x,y); XT_COLOR_BYTE(x,y,'\0'); } /******************************************************************************/ static int XT_MEMSET(void) { /* set graphics array to all zero */ int i; /*--- IF YOU HAVE IT, MEMSET IS PROBABLY FASTER memset(graphics_rgb, (char)GLOBAL_color, sizeof(byte) * Y_SIZE * X_SIZE); ---*/ for ( i=0; i< (X_SIZE * Y_SIZE); i++) { *(graphics_rgb + i) = (char)GLOBAL_color; } return(0); } /******************************************************************************/ static int XT_MEM_PRINT() /* print_graphics -- print the graphics bit array as an xterm ASCII file */ { int x; /* current x BYTE */ int y; /* current y location */ int indx; int pix; FILE *fpchar = (FILE *)NULL; if( (fpchar=fopen("xt.txt","a")) != (FILE *)NULL){ (void) fprintf(fpchar,"\033[8;%d;%dt\n",Y_SIZE,X_SIZE); /* set xterm size to array size if possible */ fprintf(fpchar,"\033]4"); /* do this as one command because screen is repainted per change */ for(indx=0;indx<CMAPSIZE;indx++){ /* print current color table */ fprintf(fpchar,";%d;rgb:%2.2x/%2.2x/%2.2x",indx,coltab[indx].r,coltab[indx].g,coltab[indx].b); } fprintf(fpchar,"\007"); /* notice going from bottom to top because putting out in a right handed coordinate system, was assuming left-handed */ for (y = (Y_SIZE-1); y >= 0; y--) { /* Loop for each byte in the array */ for ( x = 0; x < X_SIZE ; x++){ indx = Y_SIZE * x + y; pix = (int)*(graphics_rgb + indx); (void) fprintf(fpchar,"\033[48;5;%dm ",pix); } (void) fprintf(fpchar,"\n"); /* end of writing a row */ } (void) fprintf(fpchar,"\033[37;40m\n"); fclose(fpchar); } GLOBAL_drawn = UNDRAWN; return(0); } /******************************************************************************/ static int XT_PRINT(void) { /* MAYBE PUT IN WRITE OF STANDARD PIXMAPS THAT CAN BE READ IN */ /* print the current array to a file. */ if( GLOBAL_drawn ){ XT_MEM_PRINT(); /* static int GLOBAL_driver = 0; GLOBAL_driver = CHAR; switch(GLOBAL_driver) { case 1: break; case 2: break; case 3: break; default: fprintf(stderr, "ppm driver: UNKNOWN DRIVER NAME\n"); } */ } fflush(fp); /* flush the output file */ return(0); } /******************************************************************************/ static int XT_DRAW_LINE(int x,int y) { /* draws a line across a graphics array */ int runcount; int dx,dy; int xinc,yinc; int xplot,yplot; SET_PIXEL(GLOBAL_lastx,GLOBAL_lasty); /* move to initial spot */ XT_DRAW_PIXEL(GLOBAL_lastx,GLOBAL_lasty); /* move to initial spot */ runcount=0; dx = abs(GLOBAL_lastx-x); xinc=0; if (x > GLOBAL_lastx) xinc= 1; if (x == GLOBAL_lastx) xinc= 0; if (x < GLOBAL_lastx) xinc= -1; dy = abs(GLOBAL_lasty-y); yinc=0; if (y > GLOBAL_lasty) yinc= 1; if (y == GLOBAL_lasty) yinc= 0; if (y < GLOBAL_lasty) yinc= -1; xplot = GLOBAL_lastx; yplot = GLOBAL_lasty; if (dx>dy) { /* iterate x */ while (xplot != x) { xplot += xinc; runcount += dy; if (runcount >= (dx-runcount)) { yplot += yinc; runcount -= dx; } SET_PIXEL(xplot,yplot); XT_DRAW_PIXEL(xplot,yplot); } } else { /* iterate y */ while (yplot != y) { yplot += yinc; runcount += dx; if (runcount >= (dy-runcount)) { xplot += xinc; runcount -= dy; } SET_PIXEL(xplot,yplot); XT_DRAW_PIXEL(xplot,yplot); } } GLOBAL_lastx = xplot; GLOBAL_lasty = yplot; return(0); } /******************************************************************************/ static int XT_YINTERCEPT(int yscan, int x1, int y1, int x2, int y2,int *xintercept, int *yprev) { /* Determine if scan line intercepts the line segment. If it does, return the x intercept. */ int deltay, yprevious; float t; yprevious = *yprev; /* the value we need to use in this pass */ *yprev = y1; /* store the value for the next call to (probably) use */ deltay = y2 - y1; if ( deltay == 0 ){ /* horizontal lines do not contribute to scan line intercepts */ *yprev=yprevious; return(0); } t = (float)(yscan - y1) / deltay; if (t > 0.0 && t <= 1.0) { /* scan line and line segment intersect but not at leading vertex */ *xintercept = x1 + t*(x2 - x1) + 0.5; return (1); } else if ( t == 0.0 ){ /* scan line and line segment intersect at leading vertex */ *xintercept = x1 + t*(x2 - x1) + 0.5; if(yprevious <= y1 && y2 <= y1 ){ /* local maximum */ return (1); } else if(yprevious >= y1 && y2 >= y1 ){ /* local minimum */ return (1); } else{ /* ignore duplicate at vertex that is not a local maximum or minimum */ return (0); } } /* scan line and line segment did not intersect */ return (0); } /*******************************************************************************/ void XT_SOLID_FILL(int n, int x[], int y[]) { /* fill polygon of n points drawn by polyline <x,y>. */ int i, j, sorted, yhorizontal, xint, tmp, xmin, xmax, ymax, ymin, xi[MAXVERTS], yprev; if ( n > MAXVERTS) { fprintf(stderr,"*XT_SOLID_FILL* more than %d vertices in a polygon\n",MAXVERTS); return; } /* find clip range */ ymin = ymax = y[0]; xmin = xmax = x[0]; for (i = 0; i < n; i++) { ymax = MAX(ymax, y[i]); ymin = MIN(ymin, y[i]); xmax = MAX(xmax, x[i]); xmin = MIN(xmin, x[i]); } /* ensure scan lines are generated that do not cause out-of-bound problems in the y direction */ ymin=MAX(ymin,0); ymax=MIN(ymax,Y_SIZE); /* For each y value, get a list of X intersections... */ yhorizontal = ymax ; while (yhorizontal >= ymin) { j = 0; yprev = y[n-1]; for (i = 0; i < n-1; i++) if (XT_YINTERCEPT(yhorizontal, x[i], y[i], x[i+1], y[i+1], &xint, &yprev)){ xi[j] = xint; j++; } /* Last one. */ if (XT_YINTERCEPT(yhorizontal, x[n-1], y[n-1], x[0], y[0], &xint, &yprev)){ xi[j] = xint; j++; } /* odd pairs means something went wrong in figuring out whether to count vertices or not */ /* if( 2 * (j/2) != j){ fprintf(stderr,"*XT_SOLID_FILL* Internal error: odd number of intersection points (%d) \n",j); } */ /* Sort the X intersections... */ sorted = 0; while (!sorted) { sorted = 1; for (i = 0; i < j-1; i++) if (xi[i] > xi[i+1]) { tmp = xi[i]; xi[i] = xi[i+1]; xi[i+1] = tmp; sorted = 0; } } /* Draw the horizontal lines */ /* should make sure within X clipping range */ for (i = 0; i < j-1; i += 2) { GLOBAL_lastx=MAX(0,MIN(xi[i],X_SIZE)); GLOBAL_lasty=yhorizontal; XT_DRAW_LINE(MAX(0,MIN(xi[i+1],X_SIZE)), yhorizontal); } yhorizontal -= 1; } } /******************************************************************************/ static int XT_ENDCAP_CIRCLE(int x, int y){ /* Draw a circle on thick line segment end point */ /* there are more efficient ways to do this */ /* circle precision */ #define nsegs 15 /* static int nsegs= 15; */ float cx, cy, dx, dy, angle, cosine, sine ; /* array to place circle points on */ int cxras[nsegs], cyras[nsegs]; int i; angle = 2.0 * PI / nsegs; cosine = cos((double)angle); sine = sin((double)angle); /* first point on circle */ cxras[0] = cx = x + GLOBAL_rasters/2.0; cyras[0] = cy = y; for (i = 1; i < nsegs; i++) { dx = cx - x; dy = cy - y; cxras[i] = ( cx = x + dx * cosine - dy * sine) ; cyras[i] = ( cy = y + dx * sine + dy * cosine) ; } XT_SOLID_FILL(nsegs,cxras,cyras); /* fill polygon of n points drawn by polyline <x,y>. */ return(0); } /*******************************************************************************/ static int XT_setlw(int w){ /* Set the line width */ GLOBAL_rasters = w*vdevice.sizeX/10000.0; GLOBAL_rasters = MAX(1,GLOBAL_rasters); return(0); } /******************************************************************************/ int XT_color(int col){ /* change the current color */ if(col < 0){ XT_setlw(abs(col)); /* for compatibility, negative colors set line thickness */ }else{ GLOBAL_color = ABS(col % CMAPSIZE) ; } return(0); } /******************************************************************************/ int XT_mapcolor(int indx, int r, int g, int b){ /* set values in pseudo color map. */ if (indx < CMAPSIZE && indx >= 0) { coltab[indx].r = ABS(r % CMAPSIZE) ; coltab[indx].g = ABS(g % CMAPSIZE) ; coltab[indx].b = ABS(b % CMAPSIZE) ; } fprintf(fp,"\033]4;%d;rgb:%2.2x/%2.2x/%2.2x\007",indx,r,g,b); return(0); } /******************************************************************************/ int XT_getkey(void) /* XT_getkey return the next key typed in raw mode. */ { #ifdef BSD struct sgttyb oldtty, newtty; char c; ioctl(0, TIOCGETP, &oldtty); newtty = oldtty; newtty.sg_flags = RAW; ioctl(0, TIOCSETP, &newtty); read(0, &c, 1); ioctl(0, TIOCSETP, &oldtty); #else struct termio oldtty, newtty; char c; ioctl(0, TCGETA, &oldtty); newtty = oldtty; newtty.c_iflag = BRKINT | IXON | ISTRIP; newtty.c_lflag = 0; newtty.c_cc[VEOF] = 1; ioctl(0, TCSETA, &newtty); read(0, &c, 1); ioctl(0, TCSETA, &oldtty); #endif return(c); } /******************************************************************************/ void XT_GETSCREENSIZE(int *rows,int *columns){ /* query screen size */ char buf[100]; int i; *rows=400; *columns=600; fprintf(stdout,"\033[18t"); /* report size as \033[8 ; height ; width t*/ fflush(stdout); for (i = 0; i < 100; i++){ switch(XT_getkey()) { case '\033': break; default: continue; } switch(XT_getkey()) { case '[' : break; default: continue; } switch(XT_getkey()) { case '8' : break; default: continue; } for (i = 0; i < 100; i++){ /* look for height ; width t */ if((buf[i]=XT_getkey())==EOF)break; if(buf[i]=='t')break; } buf[i+1]=0; sscanf(buf,";%d;%dt",rows,columns); if (*rows <=0) *rows=400; if (*columns <=0) *columns=600; return; break; } if (*rows <=0) *rows=400; if (*columns <=0) *columns=600; } /******************************************************************************/ int XT_init(void) { /* set up the graphics mode. */ int prefx, prefy, prefxs, prefys; int i; int rows; int columns; /* DETERMINE SIZE OF GRAPHICS PIXMAP */ /* see if a size was user-specified using the prefsize procedure */ vogle_getprefposandsize(&prefx, &prefy, &prefxs, &prefys); if (prefxs != -1 ) { if (prefys <= 0 ){ fprintf(stderr,"*XT_init* y size of %d set to 400\n",prefys); prefys = 400; } else{ vdevice.sizeSy = prefys; } if (prefxs <= 0 ){ fprintf(stderr,"*XT_init* y size of %d set to 600\n",prefys); prefxs = 600; } else{ vdevice.sizeSx = prefxs; } } else{ /* nice default value */ prefx = 0; prefy = 0; XT_GETSCREENSIZE(&rows,&columns); /* default is to use as found at this point */ vdevice.sizeSx = columns; vdevice.sizeSy = rows-SCROLL; } vdevice.sizeX = vdevice.sizeY = MIN(vdevice.sizeSy,vdevice.sizeSx); X_SIZE=vdevice.sizeSx; Y_SIZE=vdevice.sizeSy; LAST=X_SIZE*Y_SIZE-1; graphics_rgb=(byte *)malloc( X_SIZE * Y_SIZE * sizeof(byte) ); /* the graphics array */ XT_MEMSET(); /* set the graphics array to 0 */ vdevice.depth = CMAPDEPTH; fp = _voutfile(); /* Cause scaling to be 0 to maxX maxY: prefx, vdevice.sizeSx+prefx, prefy, vdevice.sizeSy+prefy */ GLOBAL_lastx = -1111111; GLOBAL_lasty = -1111111; GLOBAL_drawn = UNDRAWN; XT_mapcolor( 0, 255, 255, 255); XT_mapcolor( 1, 255, 0, 0); XT_mapcolor( 2, 0, 255, 0); XT_mapcolor( 3, 255, 255, 0); XT_mapcolor( 4, 0, 0, 255); XT_mapcolor( 5, 255, 0, 255); XT_mapcolor( 6, 0, 255, 255); XT_mapcolor( 7, 0, 0, 0); XT_mapcolor( 8, 155, 0, 0); XT_mapcolor( 9, 0, 155, 0); XT_mapcolor( 10, 155, 255, 255); XT_mapcolor( 11, 155, 155, 0); XT_mapcolor( 12, 0, 0, 155); XT_mapcolor( 13, 155, 0, 155); XT_mapcolor( 14, 0, 155, 155); XT_mapcolor( 15, 100, 100, 100); /* FLASHES AND REPAINTS WITH EACH CHANGE for(i=16; i<CMAPSIZE; i++){ XT_mapcolor(i, 255, 255, 255); } */ fprintf(fp,"\033]4"); for(i=16; i<CMAPSIZE; i++){ fprintf(fp,";%d;rgb:ff/ff/ff",i); } fprintf(fp,"\007"); return(1); } /******************************************************************************/ int XT_exit(void) { /* exit from driver printing the buffer. */ XT_PRINT(); (void) fprintf(fp,"\033c"); /* Full Reset (RIS) */ if (fp != stdout && fp != stderr ){ fflush(fp); if(vdevice.writestoprocess == 2){ pclose(fp); }else{ fclose(fp); } } /* release the graphics data */ free(graphics_rgb); return(0); } /******************************************************************************/ int XT_draw(int x, int y) { /* print the commands to draw a line from the current graphics position to (x, y). */ int holdx, holdy; int xwide[4], ywide[4]; float cosa, sina; double angle; GLOBAL_lastx = x; GLOBAL_lasty = y; if (GLOBAL_lastx != vdevice.cpVx || GLOBAL_lasty != vdevice.cpVy){ GLOBAL_lastx=vdevice.cpVx; GLOBAL_lasty=vdevice.cpVy; } if ( GLOBAL_rasters <= 1){ XT_DRAW_LINE(x,y); } else{ /* thick lines are made from filled polygon(s) */ /* add a circle to ends of really thick lines */ if( GLOBAL_rasters >= 6){ holdx=GLOBAL_lastx; holdy=GLOBAL_lasty; XT_ENDCAP_CIRCLE(GLOBAL_lastx,GLOBAL_lasty); XT_ENDCAP_CIRCLE(x,y); GLOBAL_lastx=holdx; GLOBAL_lasty=holdy; } angle=atan2((double)(y-GLOBAL_lasty),(double)(x-GLOBAL_lastx)) + PI/2.0; cosa=(GLOBAL_rasters/2.0)*cos(angle); sina=(GLOBAL_rasters/2.0)*sin(angle); xwide[0]=x+cosa; xwide[1]=GLOBAL_lastx+cosa; xwide[2]=GLOBAL_lastx-cosa; xwide[3]=x-cosa; ywide[0]=y+sina; ywide[1]=GLOBAL_lasty+sina; ywide[2]=GLOBAL_lasty-sina; ywide[3]=y-sina; XT_SOLID_FILL(4,xwide,ywide); } GLOBAL_drawn = DRAWN; XT_RETURN_TO_SCROLL(); return(0); } /******************************************************************************/ /* * Get the position of the mouse. This gets a bit sticky. * some older xterms may not support mouse; but could use text cursor position * position is returned in a character value, which limits it's range to less than a large window, * especially if 2-point or 1-point font is used. * Mouse escape sequences do not work the way I expected; need to experiment or find reference material * The locator routine is very hardware specific; but the pre-exisiting X11 locator routine ... 1) samples. That is, it is always reading. It does not wait for a keypress to respond 2) returns 1 for mouse 1, 2 for 2, 4 for 3 or sum when mouse keys are pressed 3) does not appear to indicate when modifier keys are pressed 4) returns a zero when no mouse is pressed */ int XT_locator(int *x, int *y) { int buf[6]; int i; int xread; int yread; int button; int return_button; FILE *fplog = (FILE *)NULL; #ifdef BSD struct sgttyb oldtty, newtty; #else struct termio oldtty, newtty; #endif #ifdef BSD ioctl(0, TIOCGETP, &oldtty); newtty = oldtty; newtty.sg_flags = RAW; ioctl(0, TIOCSETP, &newtty); #else ioctl(0, TCGETA, &oldtty); newtty = oldtty; newtty.c_iflag = BRKINT | IXON | ISTRIP; newtty.c_lflag = 0; newtty.c_cc[VEOF] = 1; ioctl(0, TCSETA, &newtty); #endif fputs( "\033[?1003h",fp); /* Activate mouse mode */ /* fputs( "\033[1;3'{",fp); /@ Enable button transitions @/ fputs( "\033[2;2'z",fp); /@ Enable locator reporting for one report @/ fputs( "\033[1'|",fp); /@ Request Locator Position @/ */ if (fp == stdout || fp == stderr){ fflush(fp); } /* xterm(1) returns 6 bytes upon mouse read: */ buf[5]=-9999; /* if does not change must be error */ /* so no infinite loop, try up to next 100 characters for pattern */ for (i = 0; i < 100; i++){ /* look for esc[MCbCxCy */ switch(buf[0]=getchar()) { case '\033': break; default: continue; } switch(buf[1]=getchar()) { case '[' : break; default: continue; } switch(buf[2]=getchar()) { case 'M' : break; default: continue; } buf[3]=getchar(); /* mouse button information */ buf[4]=getchar(); /* x coordinate */ buf[5]=getchar(); /* y coordinate */ break; } if(buf[5] == -9999 ){ buf[3] = -1+32; buf[4] = 0+32; buf[5] = 0+32; XT_RETURN_TO_SCROLL(); fprintf(stderr,"could not get return from locator\n"); } #ifdef BSD ioctl(0, TIOCFLUSH, (char *)NULL); ioctl(0, TIOCSETP, &newtty); #else ioctl(0, TCFLSH, (char *)NULL); ioctl(0, TCSETA, &oldtty); #endif /* on button press and release, xterm sends CSI M CbCxCy. The low two bits of Cb encode button information: 0=MB1 pressed, 1=MB2 pressed, 2=MB3 pressed, 3=release. The next three bits encode the modifiers which were down when the button was pressed and are added together: 4=Shift, 8=Meta, 16=Control. Wheel mice may return buttons 4 and 5. Those buttons are represented by the same event codes as buttons 1 and 2 respectively, except that 64 is added to the event code. Release events for the wheel buttons are not reported. */ fputs( "\033[?1003l",fp); /* Inactivate mouse mode */ button=buf[3] - 32; xread = buf[4]-32; yread = buf[5]-32; yread = (Y_SIZE+SCROLL)-yread; return_button = ( button + 1 ) % 4 ; *x = xread; *y = yread; GLOBAL_lastx = xread; GLOBAL_lasty = yread; fplog=fopen("rel.txt","a") ; for (i = 0; i < 6; i++){ fprintf(fplog,"%d=%x ",i,buf[i]); } fprintf(fplog,"B=%d RETURN=%d ",button,return_button); fprintf(fplog,"x=%d y=%d\n",xread,yread); fclose(fplog) ; return(return_button); } /******************************************************************************/ int XT_clear(void) { /* flush current page and clear graphics array */ (void) fprintf(fp,"\033[8;%d;%dt\n",Y_SIZE+SCROLL,X_SIZE); /* set xterm size to array size if possible */ (void) fprintf(fp,"\033[1;%dr\n",SCROLL); /* set xterm scroll area */ XT_PRINT(); XT_MEMSET(); /* set graphics array to all zero */ (void) fprintf(fp,"\033[4%dm ",GLOBAL_color); /* set color */ (void) fprintf(fp,"\033[2J"); /* clear all */ XT_RETURN_TO_SCROLL(); GLOBAL_lastx = GLOBAL_lasty = -1; return(0); } /******************************************************************************/ static int XT_font(char *fontname) { /* load in large or small */ if (strcmp(fontname, "small") == 0) { /* regular hardware text */ vdevice.hwidth = 1.00; /* Size in plotter resolution units */ vdevice.hheight = 1.0; GLOBAL_font = 0; } else if (strcmp(fontname, "large") == 0) { vdevice.hwidth = 8.00; vdevice.hheight = 13.00; GLOBAL_font = 1; } else return(0); return(1); } /******************************************************************************/ int XT_fill(int n, int x[], int y[]) { /* "fill" a polygon */ int i; /* update current position if needed */ GLOBAL_lastx=x[0]; GLOBAL_lasty=y[0]; for (i = 1; i < n; i++){ XT_DRAW_LINE(x[i],y[i]); /* draw outline across graphics array */ } if ( x[n-1] != x[0] || y[n-1] != y[0] ) /* close the polygon if not closed */ XT_DRAW_LINE(x[0],y[0]); XT_SOLID_FILL(n, x, y); /* update current position */ GLOBAL_lastx = vdevice.cpVx = x[n - 1]; GLOBAL_lasty = vdevice.cpVy = y[n - 1]; GLOBAL_drawn = DRAWN; XT_RETURN_TO_SCROLL(); return(0); } /******************************************************************************/ /* flush the device */ int XT_sync(void) { fflush(fp); XT_RETURN_TO_SCROLL(); return(UNUSED); } /******************************************************************************/ static void XT_char0(char c) { /* XT_char output a small character */ int i,j,k; char wrd; /* HARDWARE first draft check to make sure do not exceed arrays bounds make sure in proper location hardcodes to just use font 8x13 should go to any font bitmap rotate font */ k=(int)c-32; /* get which row to use out of the bitpatterns */ if(k < 0 || k > 95 ){ return; } for (i=0;i<11;i++){ wrd=font8x13[k][i]; for ( j=0; j<8; j++ ){ if ((wrd & (0x80 >> j)) != 0){ SET_PIXEL((int)(j+vdevice.cpVx),(int)(vdevice.cpVy-i+13)); XT_DRAW_PIXEL((int)(j+vdevice.cpVx),(int)(vdevice.cpVy-i+13)); }else{ } } } vdevice.cpVx+= 8; GLOBAL_lastx=vdevice.cpVx; GLOBAL_lasty=vdevice.cpVy; GLOBAL_drawn = DRAWN; } /******************************************************************************/ static int XT_char(char c) { /* output a hardware character */ if (GLOBAL_lastx != vdevice.cpVx || GLOBAL_lasty != vdevice.cpVy) { XT_POSITION_CURSOR(vdevice.cpVx, vdevice.cpVy); } if (GLOBAL_font == 1){ XT_char0(c); }else{ XT_POSITION_CURSOR(vdevice.cpVx, vdevice.cpVy); XT_COLOR_BYTE(vdevice.cpVx,vdevice.cpVy,c); XT_RETURN_TO_SCROLL(); vdevice.cpVx++; GLOBAL_lastx=vdevice.cpVx; GLOBAL_lasty=vdevice.cpVy; } GLOBAL_lastx = GLOBAL_lasty = -1; if (fp == stdout || fp == stderr){ fflush(fp); } return(UNUSED); } /******************************************************************************/ static int XT_string(char *s) { /* output a string. */ int i; if (GLOBAL_lastx != vdevice.cpVx || GLOBAL_lasty != vdevice.cpVy){ GLOBAL_lastx=vdevice.cpVx; GLOBAL_lasty=vdevice.cpVy; XT_POSITION_CURSOR(vdevice.cpVx, vdevice.cpVy); } for(i=0; s[i]!='\0'; i++){ XT_char(s[i]); } XT_RETURN_TO_SCROLL(); return(0); } /******************************************************************************/ /* no operations - do nothing but return -1 */ static int noop(void) { return(-1); } /******************************************************************************/ static DevEntry xtdev = { "xt", /* name of device */ "large", /* name of large font */ "small", /* name of small font */ noop, /* Set drawing in back buffer */ XT_char, /* Draw a hardware character */ noop, /* Check if a key was hit */ XT_clear, /* Clear the screen to current color */ XT_color, /* Set current color */ XT_draw, /* Draw a line */ XT_exit, /* Exit graphics */ XT_fill, /* Fill a polygon */ XT_font, /* Set hardware font */ noop, /* Set drawing in front buffer */ XT_getkey, /* Wait for and get the next key hit */ XT_init, /* Initialize the device */ XT_locator, /* Get mouse/cross hair position */ XT_mapcolor, /* Set color indices */ XT_setlw, /* Set line width */ XT_string, /* Draw a hardware string */ noop, /* Swap front and back buffers */ XT_sync /* Syncronize the display */ }; /******************************************************************************/ int _XT_devcpy(void) { /* copy the device into vdevice.dev. */ vdevice.dev = xtdev; vdevice.dev.Vinit = XT_init; vdevice.dev.devname = "xt"; return(UNUSED); } /******************************************************************************/

Xterm Control Sequences

Xterm Control Sequences Edward Moy University of California, Berkeley Revised by Stephen Gildea X Consortium (1994) Thomas Dickey XFree86 Project (1996-2006) Definitions c The literal character c. C A single (required) character. Ps A single (usually optional) numeric parameter, composed of one of more digits. Pm A multiple numeric parameter composed of any number of single numeric parameters, separated by ; character(s). Individual val- ues for the parameters are listed with Ps . Pt A text parameter composed of printable characters. C1 (8-Bit) Control Characters The xterm program recognizes both 8-bit and 7-bit control characters. It generates 7-bit controls (by default) or 8-bit if S8C1T is enabled. The following pairs of 7-bit and 8-bit control characters are equiva- lent: ESC D Index (IND is 0x84) ESC E Next Line (NEL is 0x85) ESC H Tab Set (HTS is 0x88) ESC M Reverse Index (RI is 0x8d) ESC N Single Shift Select of G2 Character Set (SS2 is 0x8e): affects next character only ESC O Single Shift Select of G3 Character Set (SS3 is 0x8f): affects next character only ESC P Device Control String (DCS is 0x90) ESC V Start of Guarded Area (SPA is 0x96) ESC W End of Guarded Area (EPA is 0x97) ESC X Start of String (SOS is 0x98) ESC Z Return Terminal ID (DECID is 0x9a). Obsolete form of CSI c (DA). ESC [ Control Sequence Introducer (CSI is 0x9b) ESC \ String Terminator (ST is 0x9c) ESC ] Operating System Command (OSC is 0x9d) ESC ^ Privacy Message (PM is 0x9e) ESC _ Application Program Command (APC is 0x9f) These control characters are used in the vtXXX emulation. VT100 Mode Most of these control sequences are standard VT102 control sequences, but there is support for later DEC VT terminals (i.e., VT220, VT320, VT420), as well as ISO 6429 and aixterm color controls. The only VT102 features not supported is auto-repeat, since the only way X provides for this will affect all windows. There are additional control sequences to provide xterm-dependent functions, such as the scrollbar or window size. Where the function is specified by DEC or ISO 6429, the code assigned to it is given in parentheses. The escape codes to designate and invoke character sets are specified by ISO 2022; see that document for a dis- cussion of character sets. Single-character functions BEL Bell (Ctrl-G) BS Backspace (Ctrl-H) CR Carriage Return (Ctrl-M) ENQ Return Terminal Status (Ctrl-E). Default response is an empty string, but may be overridden by a resource answer- backString. FF Form Feed or New Page (NP) (Ctrl-L) same as LF LF Line Feed or New Line (NL) (Ctrl-J) SO Shift Out (Ctrl-N) -&gt; Switch to Alternate Character Set: invokes the G1 character set. SP Space. TAB Horizontal Tab (HT) (Ctrl-I) VT Vertical Tab (Ctrl-K) same as LF SI Shift In (Ctrl-O) -&gt; Switch to Standard Character Set: invokes the G0 character set (the default). Controls beginning with ESC (other than those where ESC is part of a 7-bit equivalent to 8-bit C1 controls), ordered by the final charac- ter(s). ESC SP F 7-bit controls (S7C1T). ESC SP G 8-bit controls (S8C1T). ESC SP L Set ANSI conformance level 1 (dpANS X3.134.1). ESC SP M Set ANSI conformance level 2 (dpANS X3.134.1). ESC SP N Set ANSI conformance level 3 (dpANS X3.134.1). ESC # 3 DEC double-height line, top half (DECDHL) ESC # 4 DEC double-height line, bottom half (DECDHL) ESC # 5 DEC single-width line (DECSWL) ESC # 6 DEC double-width line (DECDWL) ESC # 8 DEC Screen Alignment Test (DECALN) ESC % @ Select default character set, ISO 8859-1 (ISO 2022) ESC % G Select UTF-8 character set (ISO 2022) ESC ( C Designate G0 Character Set (ISO 2022) ESC ) C Designate G1 Character Set (ISO 2022) ESC * C Designate G2 Character Set (ISO 2022) ESC + C Designate G3 Character Set (ISO 2022) Final character C for designating character sets (0 , A and B apply to VT100 and up, the remainder to VT220 and up): C = 0 -&gt; DEC Special Character and Line Drawing Set C = A -&gt; United Kingdom (UK) C = B -&gt; United States (USASCII) C = 4 -&gt; Dutch C = C or 5 -&gt; Finnish C = R -&gt; French C = Q -&gt; French Canadian C = K -&gt; German C = Y -&gt; Italian C = E or 6 -&gt; Norwegian/Danish C = Z -&gt; Spanish C = H or 7 -&gt; Swedish C = = -&gt; Swiss ESC 7 Save Cursor (DECSC) ESC 8 Restore Cursor (DECRC) ESC = Application Keypad (DECPAM) ESC &gt; Normal Keypad (DECPNM) ESC F Cursor to lower left corner of screen (if enabled by the hpLowerleftBugCompat resource). ESC c Full Reset (RIS) ESC l Memory Lock (per HP terminals). Locks memory above the cursor. ESC m Memory Unlock (per HP terminals) ESC n Invoke the G2 Character Set as GL (LS2). ESC o Invoke the G3 Character Set as GL (LS3). ESC | Invoke the G3 Character Set as GR (LS3R). ESC } Invoke the G2 Character Set as GR (LS2R). ESC ~ Invoke the G1 Character Set as GR (LS1R). Application Program-Control functions APC Pt ST xterm implements no APC functions; Pt is ignored. Pt need not be printable characters. Device-Control functions DCS Ps; Ps| Pt ST User-Defined Keys (DECUDK). The first parameter: Ps = 0 -&gt; Clear all UDK definitions before starting (default) Ps = 1 -&gt; Erase Below (default) The second parameter: Ps = 0 -&gt; Lock the keys (default) Ps = 1 -&gt; Do not lock. The third parameter is a ';'-separated list of strings denoting the key-code separated by a '/' from the hex- encoded key value. The key codes correspond to the DEC function-key codes (e.g., F6=17). DCS $ q Pt ST Request Status String (DECRQSS). The string following the &quot;q&quot; is one of the following: &quot; q -&gt; DECSCA &quot; p -&gt; DECSCL r -&gt; DECSTBM m -&gt; SGR xterm responds with DCS 1 $ r Pt ST for valid requests, replacing the Pt with the corresponding CSI string, or DCS 0 $ r Pt ST for invalid requests. DCS + q Pt ST Request Termcap/Terminfo String (xterm, experimental). The string following the &quot;q&quot; is a list of names encoded in hexadecimal (2 digits per character) separated by ; which correspond to termcap or terminfo key names. xterm responds with DCS 1 + r Pt ST for valid requests, adding to Pt an = , and the value of the corresponding string that xterm would send, or DCS 0 + r Pt ST for invalid requests. The strings are encoded in hexadecimal (2 digits per character). Functions using CSI , ordered by the final character(s) CSI Ps @ Insert Ps (Blank) Character(s) (default = 1) (ICH) CSI Ps A Cursor Up Ps Times (default = 1) (CUU) CSI Ps B Cursor Down Ps Times (default = 1) (CUD) CSI Ps C Cursor Forward Ps Times (default = 1) (CUF) CSI Ps D Cursor Backward Ps Times (default = 1) (CUB) CSI Ps E Cursor Next Line Ps Times (default = 1) (CNL) CSI Ps F Cursor Preceding Line Ps Times (default = 1) (CPL) CSI Ps G Cursor Character Absolute [column] (default = [row,1]) (CHA) CSI Ps ; Ps H Cursor Position [row;column] (default = [1,1]) (CUP) CSI Ps I Cursor Forward Tabulation Ps tab stops (default = 1) (CHT) CSI Ps J Erase in Display (ED) Ps = 0 -&gt; Erase Below (default) Ps = 1 -&gt; Erase Above Ps = 2 -&gt; Erase All Ps = 3 -&gt; Erase Saved Lines (xterm) CSI ? Ps J Erase in Display (DECSED) Ps = 0 -&gt; Selective Erase Below (default) Ps = 1 -&gt; Selective Erase Above Ps = 2 -&gt; Selective Erase All CSI Ps K Erase in Line (EL) Ps = 0 -&gt; Erase to Right (default) Ps = 1 -&gt; Erase to Left Ps = 2 -&gt; Erase All CSI ? Ps K Erase in Line (DECSEL) Ps = 0 -&gt; Selective Erase to Right (default) Ps = 1 -&gt; Selective Erase to Left Ps = 2 -&gt; Selective Erase All CSI Ps L Insert Ps Line(s) (default = 1) (IL) CSI Ps M Delete Ps Line(s) (default = 1) (DL) CSI Ps P Delete Ps Character(s) (default = 1) (DCH) CSI Ps S Scroll up Ps lines (default = 1) (SU) CSI Ps T Scroll down Ps lines (default = 1) (SD) CSI Ps ; Ps ; Ps ; Ps ; Ps T Initiate highlight mouse tracking. Parameters are [func;startx;starty;firstrow;lastrow]. See the section Mouse Tracking. CSI Ps X Erase Ps Character(s) (default = 1) (ECH) CSI Ps Z Cursor Backward Tabulation Ps tab stops (default = 1) (CBT) CSI Pm ` Character Position Absolute [column] (default = [row,1]) (HPA) CSI Ps b Repeat the preceding graphic character Ps times (REP) CSI Ps c Send Device Attributes (Primary DA) Ps = 0 or omitted -&gt; request attributes from terminal. The response depends on the decTerminalID resource set- ting. -&gt; CSI ? 1 ; 2 c (``VT100 with Advanced Video Option'') -&gt; CSI ? 1 ; 0 c (``VT101 with No Options'') -&gt; CSI ? 6 c (``VT102'') -&gt; CSI ? 6 0 ; 1 ; 2 ; 6 ; 8 ; 9 ; 1 5 ; c (``VT220'') The VT100-style response parameters do not mean anything by themselves. VT220 parameters do, telling the host what features the terminal supports: -&gt; 1 132-columns -&gt; 2 Printer -&gt; 6 Selective erase -&gt; 8 User-defined keys -&gt; 9 National replacement character sets -&gt; 1 5 Technical characters -&gt; 2 2 ANSI color, e.g., VT525 -&gt; 2 9 ANSI text locator (i.e., DEC Locator mode) CSI &gt; Ps c Send Device Attributes (Secondary DA) Ps = 0 or omitted -&gt; request the terminal's identifi- cation code. The response depends on the decTerminalID resource setting. It should apply only to VT220 and up, but xterm extends this to VT100. -&gt; CSI &gt; Pp ; Pv ; Pc c where Pp denotes the terminal type -&gt; 0 (``VT100'') -&gt; 1 (``VT220'') and Pv is the firmware version (for xterm, this is the XFree86 patch number, starting with 95). In a DEC termi- nal, Pc indicates the ROM cartridge registration number and is always zero. CSI Pm d Line Position Absolute [row] (default = [1,column]) (VPA) CSI Ps ; Ps f Horizontal and Vertical Position [row;column] (default = [1,1]) (HVP) CSI Ps g Tab Clear (TBC) Ps = 0 -&gt; Clear Current Column (default) Ps = 3 -&gt; Clear All CSI Pm h Set Mode (SM) Ps = 2 -&gt; Keyboard Action Mode (AM) Ps = 4 -&gt; Insert Mode (IRM) Ps = 1 2 -&gt; Send/receive (SRM) Ps = 2 0 -&gt; Automatic Newline (LNM) CSI ? Pm h DEC Private Mode Set (DECSET) Ps = 1 -&gt; Application Cursor Keys (DECCKM) Ps = 2 -&gt; Designate USASCII for character sets G0-G3 (DECANM), and set VT100 mode. Ps = 3 -&gt; 132 Column Mode (DECCOLM) Ps = 4 -&gt; Smooth (Slow) Scroll (DECSCLM) Ps = 5 -&gt; Reverse Video (DECSCNM) Ps = 6 -&gt; Origin Mode (DECOM) Ps = 7 -&gt; Wraparound Mode (DECAWM) Ps = 8 -&gt; Auto-repeat Keys (DECARM) Ps = 9 -&gt; Send Mouse X &amp; Y on button press. See the section Mouse Tracking. Ps = 1 0 -&gt; Show toolbar (rxvt) Ps = 1 2 -&gt; Start Blinking Cursor (att610) Ps = 1 8 -&gt; Print form feed (DECPFF) Ps = 1 9 -&gt; Set print extent to full screen (DECPEX) Ps = 2 5 -&gt; Show Cursor (DECTCEM) Ps = 3 0 -&gt; Show scrollbar (rxvt). Ps = 3 5 -&gt; Enable font-shifting functions (rxvt). Ps = 3 8 -&gt; Enter Tektronix Mode (DECTEK) Ps = 4 0 -&gt; Allow 80 -&gt; 132 Mode Ps = 4 1 -&gt; more(1) fix (see curses resource) Ps = 4 2 -&gt; Enable Nation Replacement Character sets (DECNRCM) Ps = 4 4 -&gt; Turn On Margin Bell Ps = 4 5 -&gt; Reverse-wraparound Mode Ps = 4 6 -&gt; Start Logging (normally disabled by a compile-time option) Ps = 4 7 -&gt; Use Alternate Screen Buffer (unless disabled by the titeInhibit resource) Ps = 6 6 -&gt; Application keypad (DECNKM) Ps = 6 7 -&gt; Backarrow key sends backspace (DECBKM) Ps = 1 0 0 0 -&gt; Send Mouse X &amp; Y on button press and release. See the section Mouse Tracking. Ps = 1 0 0 1 -&gt; Use Hilite Mouse Tracking. Ps = 1 0 0 2 -&gt; Use Cell Motion Mouse Tracking. Ps = 1 0 0 3 -&gt; Use All Motion Mouse Tracking. Ps = 1 0 1 0 -&gt; Scroll to bottom on tty output (rxvt). Ps = 1 0 1 1 -&gt; Scroll to bottom on key press (rxvt). Ps = 1 0 3 5 -&gt; Enable special modifiers for Alt and NumLock keys. Ps = 1 0 3 6 -&gt; Send ESC when Meta modifies a key (enables the metaSendsEscape resource). Ps = 1 0 3 7 -&gt; Send DEL from the editing-keypad Delete key Ps = 1 0 4 7 -&gt; Use Alternate Screen Buffer (unless disabled by the titeInhibit resource) Ps = 1 0 4 8 -&gt; Save cursor as in DECSC (unless disabled by the titeInhibit resource) Ps = 1 0 4 9 -&gt; Save cursor as in DECSC and use Alternate Screen Buffer, clearing it first (unless disabled by the titeInhibit resource). This combines the effects of the 1 0 4 7 and 1 0 4 8 modes. Use this with terminfo- based applications rather than the 4 7 mode. Ps = 1 0 5 1 -&gt; Set Sun function-key mode. Ps = 1 0 5 2 -&gt; Set HP function-key mode. Ps = 1 0 5 3 -&gt; Set SCO function-key mode. Ps = 1 0 6 0 -&gt; Set legacy keyboard emulation (X11R6). Ps = 1 0 6 1 -&gt; Set Sun/PC keyboard emulation of VT220 keyboard. Ps = 2 0 0 4 -&gt; Set bracketed paste mode. CSI Pm i Media Copy (MC) Ps = 0 -&gt; Print screen (default) Ps = 4 -&gt; Turn off printer controller mode Ps = 5 -&gt; Turn on printer controller mode CSI ? Pm i Media Copy (MC, DEC-specific) Ps = 1 -&gt; Print line containing cursor Ps = 4 -&gt; Turn off autoprint mode Ps = 5 -&gt; Turn on autoprint mode Ps = 1 0 -&gt; Print composed display, ignores DECPEX Ps = 1 1 -&gt; Print all pages CSI Pm l Reset Mode (RM) Ps = 2 -&gt; Keyboard Action Mode (AM) Ps = 4 -&gt; Replace Mode (IRM) Ps = 1 2 -&gt; Send/receive (SRM) Ps = 2 0 -&gt; Normal Linefeed (LNM) CSI ? Pm l DEC Private Mode Reset (DECRST) Ps = 1 -&gt; Normal Cursor Keys (DECCKM) Ps = 2 -&gt; Designate VT52 mode (DECANM). Ps = 3 -&gt; 80 Column Mode (DECCOLM) Ps = 4 -&gt; Jump (Fast) Scroll (DECSCLM) Ps = 5 -&gt; Normal Video (DECSCNM) Ps = 6 -&gt; Normal Cursor Mode (DECOM) Ps = 7 -&gt; No Wraparound Mode (DECAWM) Ps = 8 -&gt; No Auto-repeat Keys (DECARM) Ps = 9 -&gt; Don't Send Mouse X &amp; Y on button press Ps = 1 0 -&gt; Hide toolbar (rxvt) Ps = 1 2 -&gt; Stop Blinking Cursor (att610) Ps = 1 8 -&gt; Don't print form feed (DECPFF) Ps = 1 9 -&gt; Limit print to scrolling region (DECPEX) Ps = 2 5 -&gt; Hide Cursor (DECTCEM) Ps = 3 0 -&gt; Don't show scrollbar (rxvt). Ps = 3 5 -&gt; Disable font-shifting functions (rxvt). Ps = 4 0 -&gt; Disallow 80 -&gt; 132 Mode Ps = 4 1 -&gt; No more(1) fix (see curses resource) Ps = 4 2 -&gt; Disable Nation Replacement Character sets (DECNRCM) Ps = 4 4 -&gt; Turn Off Margin Bell Ps = 4 5 -&gt; No Reverse-wraparound Mode Ps = 4 6 -&gt; Stop Logging (normally disabled by a com- pile-time option) Ps = 4 7 -&gt; Use Normal Screen Buffer Ps = 6 6 -&gt; Numeric keypad (DECNKM) Ps = 6 7 -&gt; Backarrow key sends delete (DECBKM) Ps = 1 0 0 0 -&gt; Don't Send Mouse X &amp; Y on button press and release. See the section Mouse Tracking. Ps = 1 0 0 1 -&gt; Don't Use Hilite Mouse Tracking Ps = 1 0 0 2 -&gt; Don't Use Cell Motion Mouse Tracking Ps = 1 0 0 3 -&gt; Don't Use All Motion Mouse Tracking Ps = 1 0 1 0 -&gt; Don't scroll to bottom on tty output (rxvt). Ps = 1 0 1 1 -&gt; Don't scroll to bottom on key press (rxvt). Ps = 1 0 3 5 -&gt; Disable special modifiers for Alt and NumLock keys. Ps = 1 0 3 6 -&gt; Don't send ESC when Meta modifies a key (disables the metaSendsEscape resource). Ps = 1 0 3 7 -&gt; Send VT220 Remove from the editing- keypad Delete key Ps = 1 0 4 7 -&gt; Use Normal Screen Buffer, clearing screen first if in the Alternate Screen (unless disabled by the titeInhibit resource) Ps = 1 0 4 8 -&gt; Restore cursor as in DECRC (unless disabled by the titeInhibit resource) Ps = 1 0 4 9 -&gt; Use Normal Screen Buffer and restore cursor as in DECRC (unless disabled by the titeInhibit resource). This combines the effects of the 1 0 4 7 and 1 0 4 8 modes. Use this with terminfo-based applica- tions rather than the 4 7 mode. Ps = 1 0 5 1 -&gt; Reset Sun function-key mode. Ps = 1 0 5 2 -&gt; Reset HP function-key mode. Ps = 1 0 5 3 -&gt; Reset SCO function-key mode. Ps = 1 0 6 0 -&gt; Reset legacy keyboard emulation (X11R6). Ps = 1 0 6 1 -&gt; Reset Sun/PC keyboard emulation of VT220 keyboard. Ps = 2 0 0 4 -&gt; Reset bracketed paste mode. CSI Pm m Character Attributes (SGR) Ps = 0 -&gt; Normal (default) Ps = 1 -&gt; Bold Ps = 4 -&gt; Underlined Ps = 5 -&gt; Blink (appears as Bold) Ps = 7 -&gt; Inverse Ps = 8 -&gt; Invisible, i.e., hidden (VT300) Ps = 2 2 -&gt; Normal (neither bold nor faint) Ps = 2 4 -&gt; Not underlined Ps = 2 5 -&gt; Steady (not blinking) Ps = 2 7 -&gt; Positive (not inverse) Ps = 2 8 -&gt; Visible, i.e., not hidden (VT300) Ps = 3 0 -&gt; Set foreground color to Black Ps = 3 1 -&gt; Set foreground color to Red Ps = 3 2 -&gt; Set foreground color to Green Ps = 3 3 -&gt; Set foreground color to Yellow Ps = 3 4 -&gt; Set foreground color to Blue Ps = 3 5 -&gt; Set foreground color to Magenta Ps = 3 6 -&gt; Set foreground color to Cyan Ps = 3 7 -&gt; Set foreground color to White Ps = 3 9 -&gt; Set foreground color to default (original) Ps = 4 0 -&gt; Set background color to Black Ps = 4 1 -&gt; Set background color to Red Ps = 4 2 -&gt; Set background color to Green Ps = 4 3 -&gt; Set background color to Yellow Ps = 4 4 -&gt; Set background color to Blue Ps = 4 5 -&gt; Set background color to Magenta Ps = 4 6 -&gt; Set background color to Cyan Ps = 4 7 -&gt; Set background color to White Ps = 4 9 -&gt; Set background color to default (origi- nal). If 16-color support is compiled, the following apply. Assume that xterm's resources are set so that the ISO color codes are the first 8 of a set of 16. Then the aixterm colors are the bright versions of the ISO colors: Ps = 9 0 -&gt; Set foreground color to Black Ps = 9 1 -&gt; Set foreground color to Red Ps = 9 2 -&gt; Set foreground color to Green Ps = 9 3 -&gt; Set foreground color to Yellow Ps = 9 4 -&gt; Set foreground color to Blue Ps = 9 5 -&gt; Set foreground color to Magenta Ps = 9 6 -&gt; Set foreground color to Cyan Ps = 9 7 -&gt; Set foreground color to White Ps = 1 0 0 -&gt; Set background color to Black Ps = 1 0 1 -&gt; Set background color to Red Ps = 1 0 2 -&gt; Set background color to Green Ps = 1 0 3 -&gt; Set background color to Yellow Ps = 1 0 4 -&gt; Set background color to Blue Ps = 1 0 5 -&gt; Set background color to Magenta Ps = 1 0 6 -&gt; Set background color to Cyan Ps = 1 0 7 -&gt; Set background color to White If xterm is compiled with the 16-color support disabled, it supports the following, from rxvt: Ps = 1 0 0 -&gt; Set foreground and background color to default If 88- or 256-color support is compiled, the following apply. Ps = 3 8 ; 5 ; Ps -&gt; Set foreground color to the sec- ond Ps Ps = 4 8 ; 5 ; Ps -&gt; Set background color to the sec- ond Ps CSI Ps n Device Status Report (DSR) Ps = 5 -&gt; Status Report CSI 0 n (``OK'') Ps = 6 -&gt; Report Cursor Position (CPR) [row;column] as CSI r ; c R CSI ? Ps n Device Status Report (DSR, DEC-specific) Ps = 6 -&gt; Report Cursor Position (CPR) [row;column] as CSI ? r ; c R (assumes page is zero). Ps = 1 5 -&gt; Report Printer status as CSI ? 1 0 n (ready) or CSI ? 1 1 n (not ready) Ps = 2 5 -&gt; Report UDK status as CSI ? 2 0 n (unlocked) or CSI ? 2 1 n (locked) Ps = 2 6 -&gt; Report Keyboard status as CSI ? 2 7 ; 1 ; 0 ; 0 n (North American) The last two parameters apply to VT400 &amp; up, and denote keyboard ready and LK01 respectively. Ps = 5 3 -&gt; Report Locator status as CSI ? 5 3 n Locator available, if compiled-in, or CSI ? 5 0 n No Locator, if not. CSI ! p Soft terminal reset (DECSTR) CSI Ps ; Ps &quot; p Set conformance level (DECSCL) Valid values for the first parameter: Ps = 6 1 -&gt; VT100 Ps = 6 2 -&gt; VT200 Ps = 6 3 -&gt; VT300 Valid values for the second parameter: Ps = 0 -&gt; 8-bit controls Ps = 1 -&gt; 7-bit controls (always set for VT100) Ps = 2 -&gt; 8-bit controls CSI Ps &quot; q Select character protection attribute (DECSCA). Valid values for the parameter: Ps = 0 -&gt; DECSED and DECSEL can erase (default) Ps = 1 -&gt; DECSED and DECSEL cannot erase Ps = 2 -&gt; DECSED and DECSEL can erase CSI Ps ; Ps r Set Scrolling Region [top;bottom] (default = full size of window) (DECSTBM) CSI ? Pm r Restore DEC Private Mode Values. The value of Ps previ- ously saved is restored. Ps values are the same as for DECSET. CSI Pt; Pl; Pb; Pr; Ps$ r Change Attributes in Rectangular Area (DECCARA). Pt; Pl; Pb; Pr denotes the rectangle. Ps denotes the SGR attributes to change: 0, 1, 4, 5, 7 CSI s Save cursor (ANSI.SYS) CSI ? Pm s Save DEC Private Mode Values. Ps values are the same as for DECSET. CSI Ps ; Ps ; Ps t Window manipulation (from dtterm, as well as extensions). These controls may be disabled using the allowWindowOps resource. Valid values for the first (and any additional parameters) are: Ps = 1 -&gt; De-iconify window. Ps = 2 -&gt; Iconify window. Ps = 3 ; x ; y -&gt; Move window to [x, y]. Ps = 4 ; height ; width -&gt; Resize the xterm window to height and width in pixels. Ps = 5 -&gt; Raise the xterm window to the front of the stacking order. Ps = 6 -&gt; Lower the xterm window to the bottom of the stacking order. Ps = 7 -&gt; Refresh the xterm window. Ps = 8 ; height ; width -&gt; Resize the text area to [height;width] in characters. Ps = 9 ; 0 -&gt; Restore maximized window. Ps = 9 ; 1 -&gt; Maximize window (i.e., resize to screen size). Ps = 1 1 -&gt; Report xterm window state. If the xterm window is open (non-iconified), it returns CSI 1 t . If the xterm window is iconified, it returns CSI 2 t . Ps = 1 3 -&gt; Report xterm window position as CSI 3 ; x; yt Ps = 1 4 -&gt; Report xterm window in pixels as CSI 4 ; height ; width t Ps = 1 8 -&gt; Report the size of the text area in characters as CSI 8 ; height ; width t Ps = 1 9 -&gt; Report the size of the screen in characters as CSI 9 ; height ; width t Ps = 2 0 -&gt; Report xterm window's icon label as OSC L label ST Ps = 2 1 -&gt; Report xterm window's title as OSC l title ST Ps &gt;= 2 4 -&gt; Resize to Ps lines (DECSLPP) CSI Pt; Pl; Pb; Pr; Ps$ t Reverse Attributes in Rectangular Area (DECRARA). Pt; Pl; Pb; Pr denotes the rectangle. Ps denotes the attributes to reverse. 1, 4, 5, 7 CSI u Save cursor (ANSI.SYS) CSI Pt; Pl; Pb; Pr; Pp; Pt; Pl; Pp$ v Copy Rectangular Area (DECCRA) Pt; Pl; Pb; Pr denotes the rectangle. Pp denotes the source page. Pt; Pl denotes the target location. Pp denotes the target page. CSI Pt ; Pl ; Pb ; Pr ' w Enable Filter Rectangle (DECEFR) Parameters are [top;left;bottom;right]. Defines the coordinates of a filter rectangle and acti- vates it. Anytime the locator is detected outside of the filter rectangle, an outside rectangle event is generated and the rectangle is disabled. Filter rectangles are always treated as &quot;one-shot&quot; events. Any parameters that are omitted default to the current locator position. If all parameters are omitted, any locator motion will be reported. DECELR always cancels any prevous rectangle definition. CSI Ps x Request Terminal Parameters (DECREQTPARM) if Ps is a &quot;0&quot; (default) or &quot;1&quot;, and xterm is emulating VT100, the control sequence elicits a response of the same form whose parameters describe the terminal: Ps -&gt; the given Ps incremented by 2. 1 -&gt; no parity 1 -&gt; eight bits 1 2 8 -&gt; transmit 38.4k baud 1 2 8 -&gt; receive 38.4k baud 1 -&gt; clock multiplier 0 -&gt; STP flags CSI Ps x Select Attribute Change Extent (DECSACE). Ps = 0 -&gt; from start to end position, wrapped Ps = 1 -&gt; from start to end position, wrapped Ps = 2 -&gt; rectangle (exact). CSI Pc; Pt; Pl; Pb; Pr$ x Fill Rectangular Area (DECFRA). Pc is the character to use. Pt; Pl; Pb; Pr denotes the rectangle. CSI Ps ; Pu ' z Enable Locator Reporting (DECELR) Valid values for the first parameter: Ps = 0 -&gt; Locator disabled (default) Ps = 1 -&gt; Locator enabled Ps = 2 -&gt; Locator enabled for one report, then dis- abled The second parameter specifies the coordinate unit for locator reports. Valid values for the second parameter: Pu = 0 or omitted -&gt; default to character cells Pu = 1 -&gt; device physical pixels Pu = 2 -&gt; character cells CSI Pt; Pl; Pb; Pr$ z Erase Rectangular Area (DECERA). Pt; Pl; Pb; Pr denotes the rectangle. CSI Pm ' { Select Locator Events (DECSLE) Valid values for the first (and any additional parame- ters) are: Ps = 0 -&gt; only respond to explicit host requests (DECRQLP) (default) also cancels any filter rectangle Ps = 1 -&gt; report button down transitions Ps = 2 -&gt; do not report button down transitions Ps = 3 -&gt; report button up transitions Ps = 4 -&gt; do not report button up transitions CSI Pt; Pl; Pb; Pr$ { Selective Erase Rectangular Area (DECSERA). Pt; Pl; Pb; Pr denotes the rectangle. CSI Ps ' | Request Locator Position (DECRQLP) Valid values for the parameter are: Ps = 0 , 1 or omitted -&gt; transmit a single DECLRP loca- tor report If Locator Reporting has been enabled by a DECELR, xterm will respond with a DECLRP Locator Report. This report is also generated on button up and down events if they have been enabled with a DECSLE, or when the locator is detected outside of a filter rectangle, if filter rectan- gles have been enabled with a DECEFR. -&gt; CSI Pe ; Pb ; Pr ; Pc ; Pp &amp; w Parameters are [event;button;row;column;page]. Valid values for the event: Pe = 0 -&gt; locator unavailable - no other parameters sent Pe = 1 -&gt; request - xterm received a DECRQLP Pe = 2 -&gt; left button down Pe = 3 -&gt; left button up Pe = 4 -&gt; middle button down Pe = 5 -&gt; middle button up Pe = 6 -&gt; right button down Pe = 7 -&gt; right button up Pe = 8 -&gt; M4 button down Pe = 9 -&gt; M4 button up Pe = 1 0 -&gt; locator outside filter rectangle ``button'' parameter is a bitmask indicating which but- tons are pressed: Pb = 0 -&gt; no buttons down Pb &amp; 1 -&gt; right button down Pb &amp; 2 -&gt; middle button down Pb &amp; 4 -&gt; left button down Pb &amp; 8 -&gt; M4 button down ``row'' and ``column'' parameters are the coordinates of the locator position in the xterm window, encoded as ASCII decimal. The ``page'' parameter is not used by xterm, and will be omitted. Operating System Controls OSC Ps ; Pt ST OSC Ps ; Pt BEL Set Text Parameters. For colors and font, if Pt is a &quot;?&quot;, the control sequence elicits a response which con- sists of the control sequence which would set the corre- sponding value. The dtterm control sequences allow you to determine the icon name and window title. Ps = 0 -&gt; Change Icon Name and Window Title to Pt Ps = 1 -&gt; Change Icon Name to Pt Ps = 2 -&gt; Change Window Title to Pt Ps = 3 -&gt; Set X property on top-level window. Pt should be in the form &quot;prop=value&quot;, or just &quot;prop&quot; to delete the property Ps = 4 ; c ; spec -&gt; Change Color Number c to the color specified by spec, i.e., a name or RGB specifica- tion as per XParseColor. Any number of c name pairs may be given. The color numbers correspond to the ANSI col- ors 0-7, their bright versions 8-15, and if supported, the remainder of the 88-color or 256-color table. If a &quot;?&quot; is given rather than a name or RGB specifica- tion, xterm replies with a control sequence of the same form which can be used to set the corresponding color. Because more than one pair of color number and specifica- tion can be given in one control sequence, xterm can make more than one reply. The 8 colors which may be set using 1 0 through 1 7 are denoted dynamic colors, since the corresponding control sequences were the first means for setting xterm's colors dynamically, i.e., after it was started. They are not the same as the ANSI colors. One or more parameters is expected for Pt. Each successive parameter changes the next color in the list. The value of Ps tells the start- ing point in the list. The colors are specified by name or RGB specification as per XParseColor. If a &quot;?&quot; is given rather than a name or RGB specifica- tion, xterm replies with a control sequence of the same form which can be used to set the corresponding dynamic color. Because more than one pair of color number and specification can be given in one control sequence, xterm can make more than one reply. Ps = 1 0 -&gt; Change VT100 text foreground color to Pt Ps = 1 1 -&gt; Change VT100 text background color to Pt Ps = 1 2 -&gt; Change text cursor color to Pt Ps = 1 3 -&gt; Change mouse foreground color to Pt Ps = 1 4 -&gt; Change mouse background color to Pt Ps = 1 5 -&gt; Change Tektronix foreground color to Pt Ps = 1 6 -&gt; Change Tektronix background color to Pt Ps = 1 7 -&gt; Change highlight color to Pt Ps = 1 8 -&gt; Change Tektronix cursor color to Pt Ps = 4 6 -&gt; Change Log File to Pt (normally disabled by a compile-time option) Ps = 5 0 -&gt; Set Font to Pt If Pt begins with a &quot;#&quot;, index in the font menu, relative (if the next character is a plus or minus sign) or absolute. A number is expected but not required after the sign (the default is the current entry for relative, zero for absolute index- ing). Ps = 5 1 (reserved for Emacs shell) Ps = 5 2 -&gt; Manipulate Selection Data. These controls may be disabled using the allowWindowOps resource. The parameter Pt is parsed as Pc; Pd The first, Pc, may contain any character from the set c p s 0 1 2 3 4 5 6 7 . It is used to construct a list of selection parameters for clipboard, primary, select, or cut buffers 0 through 8 respectively, in the order given. If the parameter is empty, xterm uses s 0 , to specify the configurable primary/clipboard selection and cut buffer 0. The second parameter, Pd, gives the selection data. Nor- mally this is a string encoded in base64. The data becomes the new selection, which is then available for pasting by other applications. If the second parameter is a ? , xterm replies to the host with the selection data encoded using the same pro- tocol. Privacy Message PM Pt ST xterm implements no PM functions; Pt is ignored. Pt need not be printable characters. PC-Style Function Keys If xterm does minimal translation of the function keys, it usually does this with a PC-style keyboard, so PC-style function keys result. Sun keyboards are similar to PC keyboards. Both have cursor and scrolling operations printed on the keypad, which duplicate the smaller cursor and scrolling keypads. X does not predefine NumLock (used for VT220 keyboards) or Alt (used as an extension for the Sun/PC keyboards) as modifiers. These keys are recognized as modifiers when enabled by the numLock resource, or by the DECSET 1 0 3 5 control sequence. The cursor keys transmit the following escape sequences depending on the mode specified via the DECCKM escape sequence. Key Normal Application -------------------------------------- Cursor Up CSI A SS3 A Cursor Down CSI B SS3 B Cursor Right CSI C SS3 C Cursor Left CSI D SS3 D -------------------------------------- The home- and end-keys (unlike PageUp and other keys also on the 6-key editing keypad) are considered &quot;cursor keys&quot; by xterm. Their mode is also controlled by the DECCKM escape sequence: Key Normal Application ---------------------------------- Home CSI H SS3 H End CSI F SS3 F ---------------------------------- The application keypad transmits the following escape sequences depend- ing on the mode specified via the DECPNM and DECPAM escape sequences. Use the NumLock key to override the application mode. Not all keys are present on the Sun/PC keypad (e.g., PF1, Tab), but are supported by the program. Key Numeric Application Terminfo Termcap -------------------------------------------------------------- Space SP SS3 SP - - Tab TAB SS3 I - - Enter CR SS3 M kent @8 PF1 SS3 P SS3 P kf1 k1 PF2 SS3 Q SS3 Q kf2 k2 PF3 SS3 R SS3 R kf3 k3 PF4 SS3 S SS3 S kf4 k4 * (multiply) * SS3 j - - + (add) + SS3 k - - , (comma) , SS3 l - - - (minus) - SS3 m - - . (Delete) . CSI 3 ~ - - / (divide) / SS3 o - - 0 (Insert) 0 CSI 2 ~ - - 1 (End) 1 SS3 F kc1 K4 2 (DownArrow) 2 CSI B - - 3 (PageDown) 3 CSI 6 ~ kc3 K5 4 (LeftArrow) 4 CSI D - - 5 (Begin) 5 CSI E kb2 K2 6 (RightArrow) 6 CSI C - - 7 (Home) 7 SS3 H ka1 K1 8 (UpArrow) 8 CSI A - - 9 (PageUp) 9 CSI 5 ~ ka3 K3 = (equal) = SS3 X - - -------------------------------------------------------------- They also provide 12 function keys, as well as a few other special-pur- pose keys. Key Escape Sequence --------------------------- F1 SS3 P F2 SS3 Q F3 SS3 R F4 SS3 S F5 CSI 1 5 ~ F6 CSI 1 7 ~ F7 CSI 1 8 ~ F8 CSI 1 9 ~ F9 CSI 2 0 ~ F10 CSI 2 1 ~ F11 CSI 2 3 ~ F12 CSI 2 4 ~ --------------------------- Older versions of xterm implement different escape sequences for F1 through F4. These can be activated by setting the oldXtermFKeys resource. However, since they do not correspond to any hardware termi- nal, they have been deprecated. (The DEC VT220 reserves F1 through F5 for local functions such as Setup). Key Escape Sequence --------------------------- F1 CSI 1 1 ~ F2 CSI 1 2 ~ F3 CSI 1 3 ~ F4 CSI 1 4 ~ --------------------------- In normal mode, i.e., a Sun/PC keyboard when the sunKeyboard resource is false, xterm recognizes function key modifiers which are parameters appended before the final character of the control sequence. Code Modifiers --------------------------------- 2 Shift 3 Alt 4 Shift + Alt 5 Control 6 Shift + Control 7 Alt + Control 8 Shift + Alt + Control --------------------------------- For example, shift-F5 would be sent as CSI 1 5 ; 2 ~ If the alwaysUseMods resource is set, the Meta modifier also is recog- nized, making parameters 9 through 16. VT220-Style Function Keys However, xterm is most useful as a DEC VT102 or VT220 emulator. Set the sunKeyboard resource to true to force a Sun/PC keyboard to act like a VT220 keyboard. The VT102/VT220 application keypad transmits unique escape sequences in application mode, which are distinct from the cursor and scrolling key- pad: Key Numeric Application -------------------------------------- Space SP SS3 SP Tab TAB SS3 I Enter CR SS3 M PF1 SS3 P SS3 P PF2 SS3 Q SS3 Q PF3 SS3 R SS3 R PF4 SS3 S SS3 S * (multiply) * SS3 j + (add) + SS3 k , (comma) , SS3 l - (minus) - SS3 m . (period) . SS3 n / (divide) / SS3 o 0 0 SS3 p 1 1 SS3 q 2 2 SS3 r 3 3 SS3 s 4 4 SS3 t 5 5 SS3 u 6 6 SS3 v 7 7 SS3 w 8 8 SS3 x 9 9 SS3 y = (equal) = SS3 X -------------------------------------- The VT220 provides a 6-key editing keypad, which is analogous to that on the PC keyboard. It is not affected by DECCKM or DECPNM/DECPAM: Key Normal Application ---------------------------------- Insert CSI 2 ~ CSI 2 ~ Delete CSI 3 ~ CSI 3 ~ Home CSI 1 ~ CSI 1 ~ End CSI 4 ~ CSI 4 ~ PageUp CSI 5 ~ CSI 5 ~ PageDown CSI 6 ~ CSI 6 ~ ---------------------------------- The VT220 provides 8 additional function keys. With a Sun/PC keyboard, access these keys by Control/F1 for F13, etc. Key Escape Sequence --------------------------- F13 CSI 2 5 ~ F14 CSI 2 6 ~ F15 CSI 2 8 ~ F16 CSI 2 9 ~ F17 CSI 3 1 ~ F18 CSI 3 2 ~ F19 CSI 3 3 ~ F20 CSI 3 4 ~ --------------------------- VT52-Style Function Keys A VT52 does not have function keys, but it does have a numeric keypad and cursor keys. They differ from the other emulations by the prefix. Also, the cursor keys do not change: Key Normal/Application ---------------------------------- Cursor Up ESC A Cursor Down ESC B Cursor Right ESC C Cursor Left ESC D ---------------------------------- The keypad is similar: Key Numeric Application -------------------------------------- Space SP ESC ? SP Tab TAB ESC ? I Enter CR ESC ? M PF1 ESC P ESC P PF2 ESC Q ESC Q PF3 ESC R ESC R PF4 ESC S ESC S * (multiply) * ESC ? j + (add) + ESC ? k , (comma) , ESC ? l - (minus) - ESC ? m . (period) . ESC ? n / (divide) / ESC ? o 0 0 ESC ? p 1 1 ESC ? q 2 2 ESC ? r 3 3 ESC ? s 4 4 ESC ? t 5 5 ESC ? u 6 6 ESC ? v 7 7 ESC ? w 8 8 ESC ? x 9 9 ESC ? y = (equal) = ESC ? X -------------------------------------- Sun-Style Function Keys The xterm program provides support for Sun keyboards more directly, by a menu toggle that causes it to send Sun-style function key codes rather than VT220. Note, however, that the sun and VT100 emulations are not really compatible. For example, their wrap-margin behavior differs. Only function keys are altered; keypad and cursor keys are the same. The emulation responds identically. See the xterm-sun terminfo entry for details. HP-Style Function Keys Similarly, xterm can be compiled to support HP keyboards. See the xterm-hp terminfo entry for details. The Alternate Screen Buffer Xterm maintains two screen buffers. The normal screen buffer allows you to scroll back to view saved lines of output up to the maximum set by the saveLines resource. The alternate screen buffer is exactly as large as the display, contains no additional saved lines. When the alternate screen buffer is active, you cannot scroll back to view saved lines. Xterm provides control sequences and menu entries for switching between the two. Most full-screen applications use terminfo or termcap to obtain strings used to start/stop full-screen mode, i.e., smcup and rmcup for terminfo, or the corresponding ti and te for termcap. The titeInhibit resource removes the ti and te strings from the TERMCAP string which is set in the environment for some platforms. That is not done when xterm is built with terminfo libraries because terminfo does not provide the whole text of the termcap data in one piece. It would not work for ter- minfo anyway, since terminfo data is not passed in environment vari- ables; setting an environment variable in this manner would have no effect on the application's ability to switch between normal and alter- nate screen buffers. Instead, the newer private mode controls (such as 1 0 4 9 ) for switching between normal and alternate screen buffers sim- ply disable the switching. They add other features such as clearing the display for the same reason: to make the details of switching indepen- dent of the application that requests the switch. Bracketed Paste Mode When bracketed paste mode is set, pasted text is bracketed with control sequences so that the program can differentiate pasted text from typed- in text. When bracketed paste mode is set, the program will receive: ESC [ 200 ~, followed by the pasted text, followed by ESC [ 201 ~. Mouse Tracking The VT widget can be set to send the mouse position and other informa- tion on button presses. These modes are typically used by editors and other full-screen applications that want to make use of the mouse. There are six mutually exclusive modes. One is DEC Locator mode, enabled by the DECELR CSI Ps ; Ps 'z control sequence, and is not described here (control sequences are summarized above). The remaining five modes are each enabled (or disabled) by a different parameter in DECSET CSI ? Pm h or DECRST CSI ? Pm l control sequence. Manifest constants for the parameter values are defined in xcharmouse.h as follows: #define SET_X10_MOUSE 9 #define SET_VT200_MOUSE 1000 #define SET_VT200_HIGHLIGHT_MOUSE 1001 #define SET_BTN_EVENT_MOUSE 1002 #define SET_ANY_EVENT_MOUSE 1003 The motion reporting modes are strictly xterm extensions, and are not part of any standard, though they are analogous to the DEC VT200 DECELR locator reports. Parameters (such as pointer position and button number) for all mouse tracking escape sequences generated by xterm encode numeric parameters in a single character as value+32. For example, ! specifies the value 1. The upper left character position on the terminal is denoted as 1,1. X10 compatibility mode sends an escape sequence only on button press, encoding the location and the mouse button pressed. It is enabled by specifying parameter 9 to DECSET. On button press, xterm sends CSI M CbCxCy (6 characters). Cb is button-1. Cx and Cy are the x and y coor- dinates of the mouse when the button was pressed. Normal tracking mode sends an escape sequence on both button press and release. Modifier key (shift, ctrl, meta) information is also sent. It is enabled by specifying parameter 1000 to DECSET. On button press or release, xterm sends CSI M CbCxCy. The low two bits of Cb encode button information: 0=MB1 pressed, 1=MB2 pressed, 2=MB3 pressed, 3=release. The next three bits encode the modifiers which were down when the button was pressed and are added together: 4=Shift, 8=Meta, 16=Control. Note however that the shift and control bits are normally unavailable because xterm uses the control modifier with mouse for popup menus, and the shift modifier is used in the default translations for button events. The Meta modifier recognized by xterm is the mod1 mask, and is not nec- essarily the &quot;Meta&quot; key (see xmodmap). Cx and Cy are the x and y coor- dinates of the mouse event, encoded as in X10 mode. Wheel mice may return buttons 4 and 5. Those buttons are represented by the same event codes as buttons 1 and 2 respectively, except that 64 is added to the event code. Release events for the wheel buttons are not reported. Mouse highlight tracking notifies a program of a button press, receives a range of lines from the program, highlights the region covered by the mouse within that range until button release, and then sends the program the release coordinates. It is enabled by specifying parameter 1001 to DECSET. Highlighting is performed only for button 1, though other but- ton events can be received. Warning: use of this mode requires a coop- erating program or it will hang xterm. On button press, the same infor- mation as for normal tracking is generated; xterm then waits for the program to send mouse tracking information. All X events are ignored until the proper escape sequence is received from the pty: CSI Ps ; Ps ; Ps ; Ps ; Ps T . The parameters are func, startx, starty, firstrow, and lastrow. func is non-zero to initiate highlight tracking and zero to abort. startx and starty give the starting x and y location for the highlighted region. The ending location tracks the mouse, but will never be above row firstrow and will always be above row lastrow. (The top of the screen is row 1.) When the button is released, xterm reports the ending position one of two ways: if the start and end coordinates are valid text locations: CSI t CxCy. If either coordinate is past the end of the line: CSI T CxCyCxCyCxCy. The parameters are startx, starty, endx, endy, mousex, and mousey. startx, starty, endx, and endy give the starting and ending character positions of the region. mousex and mousey give the location of the mouse at button up, which may not be over a character. Button-event tracking is essentially the same as normal tracking, but xterm also reports button-motion events. Motion events are reported only if the mouse pointer has moved to a different character cell. It is enabled by specifying parameter 1002 to DECSET. On button press or release, xterm sends the same codes used by normal tracking mode. On button-motion events, xterm adds 32 to the event code (the third charac- ter, Cb). The other bits of the event code specify button and modifier keys as in normal mode. For example, motion into cell x,y with button 1 down is reported as CSI M @ CxCy. ( @ = 32 + 0 (button 1) + 32 (motion indicator) ). Similarly, motion with button 3 down is reported as CSI M B CxCy. ( B = 32 + 2 (button 3) + 32 (motion indicator) ). Any-event mode is the same as button-event mode, except that all motion events are reported, even if no mouse button is down. It is enabled by specifying 1003 to DECSET. Tektronix 4014 Mode Most of these sequences are standard Tektronix 4014 control sequences. Graph mode supports the 12-bit addressing of the Tektronix 4014. The major features missing are the write-through and defocused modes. This document does not describe the commands used in the various Tektronix plotting modes but does describe the commands to switch modes. BEL Bell (Ctrl-G) BS Backspace (Ctrl-H) TAB Horizontal Tab (Ctrl-I) LF Line Feed or New Line (Ctrl-J) VT Cursor up (Ctrl-K) FF Form Feed or New Page (Ctrl-L) CR Carriage Return (Ctrl-M) ESC ETX Switch to VT100 Mode (ESC Ctrl-C) ESC ENQ Return Terminal Status (ESC Ctrl-E) ESC FF PAGE (Clear Screen) (ESC Ctrl-L) ESC SO Begin 4015 APL mode (ignored by xterm) (ESC Ctrl-N) ESC SI End 4015 APL mode (ignored by xterm) (ESC Ctrl-O) ESC ETB COPY (Save Tektronix Codes to file COPYyyyy-mm- dd.hh:mm:ss) (ESC Ctrl-W) ESC CAN Bypass Condition (ESC Ctrl-X) ESC SUB GIN mode (ESC Ctrl-Z) ESC FS Special Point Plot Mode (ESC Ctrl-\) ESC 8 Select Large Character Set ESC 9 Select #2 Character Set ESC : Select #3 Character Set ESC ; Select Small Character Set OSC Ps ; Pt BEL Set Text Parameters of VT window Ps = 0 -&gt; Change Icon Name and Window Title to Pt Ps = 1 -&gt; Change Icon Name to Pt Ps = 2 -&gt; Change Window Title to Pt Ps = 4 6 -&gt; Change Log File to Pt (normally disabled by a compile-time option) ESC ` Normal Z Axis and Normal (solid) Vectors ESC a Normal Z Axis and Dotted Line Vectors ESC b Normal Z Axis and Dot-Dashed Vectors ESC c Normal Z Axis and Short-Dashed Vectors ESC d Normal Z Axis and Long-Dashed Vectors ESC h Defocused Z Axis and Normal (solid) Vectors ESC i Defocused Z Axis and Dotted Line Vectors ESC j Defocused Z Axis and Dot-Dashed Vectors ESC k Defocused Z Axis and Short-Dashed Vectors ESC l Defocused Z Axis and Long-Dashed Vectors ESC p Write-Thru Mode and Normal (solid) Vectors ESC q Write-Thru Mode and Dotted Line Vectors ESC r Write-Thru Mode and Dot-Dashed Vectors ESC s Write-Thru Mode and Short-Dashed Vectors ESC t Write-Thru Mode and Long-Dashed Vectors FS Point Plot Mode (Ctrl-\) GS Graph Mode (Ctrl-]) RS Incremental Plot Mode (Ctrl-^) US Alpha Mode (Ctrl-_) VT52 Mode Parameters for cursor movement are at the end of the ESC Y escape sequence. Each ordinate is encoded in a single character as value+32. For example, ! is 1. The screen coordinate system is 0-based. ESC A Cursor up. ESC B Cursor down. ESC C Cursor right. ESC D Cursor left. ESC F Enter graphics mode. ESC G Exit graphics mode. ESC H Move the cursor to the home position. ESC I Reverse line feed. ESC J Erase from the cursor to the end of the screen. ESC K Erase from the cursor to the end of the line. ESC Y Ps Ps Move the cursor to given row and column. ESC Z Identify -&gt; ESC / Z (``I am a VT52.'') ESC = Enter alternate keypad mode. ESC &gt; Exit alternate keypad mode. ESC &lt; Exit VT52 mode (Enter VT100 mode).